Applications of Fixed Point Theorems to the Hyers–ulam Stability of Functional Equations – a Survey
نویسنده
چکیده
The fixed point method, which is the second most popular technique of proving the Hyers–Ulam stability of functional equations, was used for the first time in 1991 by J.A. Baker who applied a variant of Banach’s fixed point theorem to obtain the stability of a functional equation in a single variable. However, most authors follow Radu’s approach and make use of a theorem of Diaz and Margolis. The main aim of this survey is to present applications of different fixed point theorems to the theory of the Hyers–Ulam stability of functional equations. Institute of Mathematics, Pedagogical University, Podchora̧żych 2, 30-084 Kraków, Poland. E-mail address: [email protected] Date: Received: 18 February 2012; Accepted: 4 March 2012. 2010 Mathematics Subject Classification. Primary 39B82; Secondary 47H10, 46S10.
منابع مشابه
Quadratic $alpha$-functional equations
In this paper, we solve the quadratic $alpha$-functional equations $2f(x) + 2f(y) = f(x + y) + alpha^{-2}f(alpha(x-y)); (0.1)$ where $alpha$ is a fixed non-Archimedean number with $alpha^{-2}neq 3$. Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the quadratic $alpha$-functional equation (0.1) in non-Archimedean Banach spaces.
متن کاملA fixed point approach to the Hyers-Ulam stability of an $AQ$ functional equation in probabilistic modular spaces
In this paper, we prove the Hyers-Ulam stability in$beta$-homogeneous probabilistic modular spaces via fixed point method for the functional equation[f(x+ky)+f(x-ky)=f(x+y)+f(x-y)+frac{2(k+1)}{k}f(ky)-2(k+1)f(y)]for fixed integers $k$ with $kneq 0,pm1.$
متن کاملCOUPLED FIXED POINT THEOREMS FOR RATIONAL TYPE CONTRACTIONS VIA C-CLASS FUNCTIONS
In this paper, by using C-class functions, we will present a coupled xed problem in b-metric space for the single-valued operators satisfying a generalized contraction condition. First part of the paper is related to some xed point theorems, the second part presents the uniqueness and existence for the solution of the coupled xed point problem and in the third part we...
متن کاملA fixed point approach to the stability of additive-quadratic-quartic functional equations
In this article, we introduce a class of the generalized mixed additive, quadratic and quartic functional equations and obtain their common solutions. We also investigate the stability of such modified functional equations in the non-Archimedean normed spaces by a fixed point method.
متن کاملHYERS-ULAM-RASSIAS STABILITY OF FUNCTIONAL EQUATIONS ON FUZZY NORMED LINER SPACES
In this paper, we use the denition of fuzzy normed spaces givenby Bag and Samanta and the behaviors of solutions of the additive functionalequation are described. The Hyers-Ulam stability problem of this equationis discussed and theorems concerning the Hyers-Ulam-Rassias stability of theequation are proved on fuzzy normed linear space.
متن کامل